Semiblind spatial ICA of fMRI using spatial constraints.
نویسندگان
چکیده
Independent component analysis (ICA) utilizing prior information, also called semiblind ICA, has demonstrated considerable promise in the analysis of functional magnetic resonance imaging (fMRI). So far, temporal information about fMRI has been used in temporal ICA or spatial ICA as additional constraints to improve estimation of task-related components. Considering that prior information about spatial patterns is also available, a semiblind spatial ICA algorithm utilizing the spatial information was proposed within the framework of constrained ICA with fixed-point learning. The proposed approach was first tested with synthetic fMRI-like data, and then was applied to real fMRI data from 11 subjects performing a visuomotor task. Three components of interest including two task-related components and the "default mode" component were automatically extracted, and atlas-defined masks were used as the spatial constraints. The default mode network, a set of regions that appear correlated in particular in the absence of tasks or external stimuli and is of increasing interest in fMRI studies, was found to be greatly improved when incorporating spatial prior information. Results from simulation and real fMRI data demonstrate that the proposed algorithm can improve ICA performance compared to a different semiblind ICA algorithm and a standard blind ICA algorithm.
منابع مشابه
Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملTemporally and Spatially Constrained ICA of fMRI Data Analysis
Constrained independent component analysis (CICA) is capable of eliminating the order ambiguity that is found in the standard ICA and extracting the desired independent components by incorporating prior information into the ICA contrast function. However, the current CICA method produces constraints that are based on only one type of prior information (temporal/spatial), which may increase the ...
متن کاملICA analysis of fMRI with real-time constraints: an evaluation of fast detection performance as function of algorithms, parameters and a priori conditions
Independent component analysis (ICA) techniques offer a data-driven possibility to analyze brain functional MRI data in real-time. Typical ICA methods used in functional magnetic resonance imaging (fMRI), however, have been until now mostly developed and optimized for the off-line case in which all data is available. Real-time experiments are ill-posed for ICA in that several constraints are ad...
متن کاملEffect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity
Spatial smoothing is a widely used preprocessing step in functional magnetic resonance imaging (fMRI) data analysis. In this work, we report on the spatial smoothing effect on task-evoked fMRI brain functional mapping and functional connectivity. Initially, we decomposed the task fMRI data into a collection of components or networks by independent component analysis (ICA). The designed task par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 31 7 شماره
صفحات -
تاریخ انتشار 2010